火災爆炸案事後運用實例

事故調查方法工具與防範對策發展應用

何明信

高雄市政府勞工局勞動檢查處

目的

提升相關人員對於事故調查 (AI)過程與產出品質之重視

時間序列

事故調查核心流 程的三項工具或 技術

為何樹分析 (WTA)

危害控制階層思 維

現況

未有一致性的AI方法論。

仍使用heinrich (1931)事故模式

防範對策運用策略未具邏輯

防範對策與原因脫節

經驗與認知決定AI品質

主流作法參考

- 2004, <u>Investigating accidents</u> and incidents, HSG245, HSE

AI 核心流程

- 1.組成調查小組
 - 2.資料收集(發展時間序列)與驗證
 - 3.事故原因分析(辨識現行管理系統缺失)
 - 4. 風險控制方法發展
- 5.行動計畫與實施

AI 工具與技術思維

蒐證

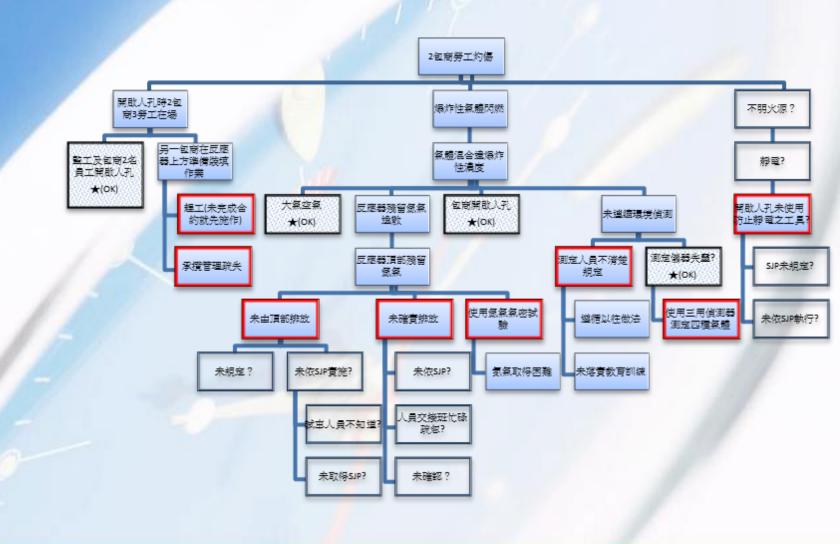
時間序列 (如何收集資料與驗證?)

分析

為何樹分析 WTA (如何分 析真因?)

改善

危害/風險控制階層思維(如何對症下藥?


實例運用

2013年5月於某新建工場,新設製程之反應器經以氫氣進行氣密試驗查漏完成後,在準備後續回填觸媒之前置作業中,開啟人孔蓋卻發生閃火灼傷
2名包商人員之職災事故。

實例運用-事故時間序列表

li an		-to 1.1.	T	
時間	發生經過及處理情形	資料來源	狀態	
5月 D 日	R-XXX 反應器觸媒卸除待氣密測試後回填觸 媒。 R-XXX 反應器實施氫氣氣密試驗查漏完成。	A 包商	使用氫 氣試壓 (本質安 全?)	
5月D+1日 07:00	業主試爐小組開始進行以氮氣吹驅 R-XXX 反應器三次。	試爐小 組	業主晚/ 早班交 接	
08:00	召集全體協力廠商(A 包商及 B 包商)及其現場 勞工進行工具箱會議暨危害告知。	工地專案		
08:10	原事業單位試車經理郭 OO 簽核 B 包商之工作 許可證;試車小組工程師潘 OO 簽核 A 包商之 工作許可證。	原事業單位	A 包商尚 未完成 合約	
08:30	業主試爐小組及原事業單位試 <mark>伸工</mark> 程師董 OO 於業主控制室確認尚在進行第三次吹驅狀 況,控制室將氮氣吹驅裝置關閉及 flare 開關手 把關閉。	原事業 單位	業主試 爐小組 未至現 場確認	
09:00	董 OO 工程師至 R-XXX 反應器現場連絡控制 室確認反應器內部錶壓力降為" 0"並確定關 閉,並檢查反應器 2 樓至 7 樓盲板情形後,向 控制室確認反應器盲板無異樣。與控制室雙方 確認可以開啟人孔。(註:錶壓力降為" 0"等	董 00	控制室 野田 水空 市 水	
	於一大氣壓),同時 A 包商作業人員於 R-XXX 反應器平台上從事觸媒回填前置作業。		資料來源:復	工報告書及現場訪查

實例運用-WTA工具運用

實例運用-改善對策(危害控制策略思維與採用)

原事業單位原因分析與改善對策一覽表

no	() 復工計畫分析原因		復工計畫改善對策	需澄清?(非	風險控制
				有效對策)	階層*
1	不安全	未排空殘餘之	應排空殘餘之氫氣	如何排空?	6. 行政管
	環境	氫氣			理
2		未預先從頂部	應從頂部排放氫氣	無/未照 SOP?	6. 行政管
		排放氫氣			理
3	不安全	未實施反應器	應實施環境測定	無/無連續/無	6. 行政管
	行為	內氫氣含量連		效測定?	理
		續偵測			
4		施工人員未使	試車人員應使用安	不知道/未提	6. 行政管
4		用安全之介面	全之介面工具	供/未使用?	理
		工具開啟人孔			113
5		開啟人孔作業	???	未列對策?	2. 設計消
		未隔離非相關			除(減少暴
		人員(減少施工			露人數)
		人數暴露)			
6	基本原	(續 1, 2 項)氫	氫氣吹驅應落實標	如何落實?	6. 行政管
	因	氣吹驅未落實	準作業程序	- 40	理
		標準作業程序			
7		(本質較安全)	???	未列對策?	2. 設計消
		不宜採用氫氣		1	除(消除危
		執行氣密測試			害源)

結論

AI在檢驗組織發現與解決問題的自我調整能力, 它是工安持續改善的基本功。

AI列為職業安全衛生專業訓練科目之一。

防止再發是AI主要目的。

熟稔AI工具與技術思維→產出一致性與目的達成。