瓦斯儲槽火損勘用性評估

劉正章、程子萍

工業技術研究院 材料與化工研究所

一、前言

近年來一般建築物或是工廠廠房發生重大火災事件時有所 聞,除了造成人員的傷亡外,對於結構安全性亦造成無可避免 的傷害。例如以鋼鐵為建物或結構體之結構材料時,當受到火 場高溫影響後,對於結構力學之強度影響,或者材料顯微組織 之變異程度,無法單獨藉由外觀檢視而正確判斷其受損程度。 再者,一般事業單位在尚未釐清結構體堪用性前,為了確保該 結構體或設備整體之完整性,往往無法取樣以獲得適當樣品於 實驗室中進行相關試驗,進而造成火損評估上的困難度。

有鑑於此,本文即針對某座瓦斯儲槽於火災受損後,利用 實地現場勘查、現場金相分析及硬度量測等非破壞方式進行材 質分析,並且參考 API 579-section 11 章節所提之項目進行評 估,以確定並研判瓦斯儲槽於火損後之勘用性。

二、背景調查

某球型瓦斯儲槽(內容物主要為甲烷)進行開槽作業時, 工作人員拆除瓦斯儲槽下方之人孔法蘭固定螺栓時發生火災, 火焰由人孔法蘭噴出並向外燃燒(以下簡稱火源處)。當火災 發生時,儲槽上端之散水管立即作動供水,以降低整體槽體表 面溫度並防止災害擴大,而消防隊約15分鐘後到達,協助控制 火勢。火災開始至撲滅全程歷經約1小時45分。

由於火焰由人孔法蘭噴出燃燒(若將該儲槽比喻為地球), 下溫帶及下極板之槽體表面因受高溫影響而呈焦黑狀,而且槽 體外觀隨著與火源距離不同而有所差異,如圖1及圖2所示。為 確認火災之實際影響範圍,釐清高溫是否對於儲槽材料性質有 所改變,乃進行儲槽現場勘查,並在受火災波及區(以下稱為 波及側)選定4點進行現場金相組織和硬度分析,此4個分析點 分別給予編號No.1、No.2、No.3及No.7;另在未受火災波及區 (以下稱為未波及側)亦選定3點進行金相組織和硬度之對照分 析,分別給予編號No.4、No.5及No.6。除上述7個分析點外,依 照與火源距離另增設3點硬度量測點(編號為No.8、No.9及 No.10),以瞭解高溫影響範圍。相關取樣點之分布位置,以及 其所對應之板件編號如圖1所示;依據各取樣點所對應之板件, 其個別之化學組成與機械性質,由出廠之檢查證明書中經整理 後列於表1所示。

- 三、評估結果與討論
 - (一) 目視觀察:

圖2中波及側之槽體板件表面受損情況,可觀察到取樣點 No.7(人孔法蘭處)之表面氧化層已有剝離現象,推測該處位 於儲槽正下方,散水管供給之降溫用水較難達到此處,且火源 於天然氣持續供應情況下,不斷由該處向外噴出和燃燒,使其 表面長時間處於高溫狀態而顯著氧化。距離火源稍遠處之 No.1、No.2、No.3及No.8、No.9、No.10取樣點,雖可觀察到各 點表面亦具氧化現象,但因儲槽表面積頗大且位於開放區域, 熱能易因空氣對流而迅速被帶離板材表面,故氧化程度相較於 人孔法蘭而言較不嚴重。

位於火災波及區域邊緣之No.5取樣點,其儲槽外壁被覆有 機塗層已呈焦黑狀(見圖2),且已有起泡現象,顯示該處溫度 應超過300°C^{[1]。}然而未波及側之槽體板件兩個取樣點No.4及 No.6,因位於火勢相反方向,其受損情況較波及側輕微。不過 No.4取樣點表面之有機塗層可發現具有焦黑的現象,但尚未起 泡,研判該處表面之有機塗層因未直接受到火焰影響,使得此 處溫度效應僅係靠火源熱能以熱傳導的方式傳至此,故僅造成 該處發生有機塗層焦黑現象,也因此可推論No.4取樣點之溫度 相較No.5取樣點低;No.6取樣點之表面除了具有水紋痕跡外, 整體外觀仍維持原儲槽之表面形貌。

(二) 顯微組織觀察:

每個取樣點依循標準金相準備方式,經過粗磨、細磨及拋 光步驟後,以5% Nital溶液(硝酸和酒精混合液)腐蝕液侵蝕, 而後再利用Struers RepliSet[®]複製膠,將侵蝕顯現之顯微組織複 印於膠膜上,待其硬化後取下並帶回實驗室利用光學顯微鏡 (Optical Microscope, OM)觀察。

儲槽板件屬於JIS G3115規範^[2]中Grade SPV 50Q之板材,其 出廠檢查証明書中的化學組成與機械性質皆符合規範的要求, 詳如表1。SPV 50Q板材(現行版JIS規範的材料代號已更改為 SPV 490Q)規格中的Q所代表意義係指材料需進行"淬火後回 火"熱處理程序,而其所得之顯微組織應為回火麻田散鐵 (tempered martensite)^[3]。各取樣點之顯微組織形貌依序如圖3 至圖8所示,觀察發現波及側和未波及側之鋼板金相組織皆為回 火麻田散鐵相,並未受到火災之高溫影響而肇致顯微組織改 變,顯示各取樣點之槽壁溫度並未超過肥粒鐵相至沃斯田鐵相 變態溫度(ferrite to austenite transformation temperature, 723°C)。倘若火災波及區之槽壁溫度曾超過相變態溫度,則槽 壁材質在冷卻至常溫後,將轉變成具有肥粒鐵相(ferrite)和波 來鐵相(pearlite)之金相組織,與現況之回火麻田散鐵相顯著 不同。

人孔法蘭由JIS G3201規範^[4]之SF45A鍛造鋼製成,其顯微 組織如圖9所示,可發現組織中之晶粒形狀非屬正常的等軸晶粒 (equiaxed grain),且肥粒鐵相和波來鐵相之分布與排列不具 規律性或方向性,故研判造成此現象之可能原因為二:

- 法蘭於鍛造加工後,並未進行正常化熱處理 (normalizing)。
- 所使用材料非屬普通碳鋼(plain carbon steel)。

(三)硬度量测:

各取樣點之表面經粗磨、細磨及清洗等步驟後,以手持式 硬度計於取樣點任意選取三點位置進行里氏硬度值(Leeb hardness number)量測,而所得之數據再轉換以維氏硬度值 (Vickers hardness, HV)或洛氏硬度值(Rockwell hardness, HRC or HRB)表示,結果如表2所示。分析顯示所有板件之取樣點中, 以未波及側No.6之平均硬度值為最高(264 HV),其次為波及 側No.10和未波及側No.5(硬度值260 HV),而波及側No.2之硬 度值最低(232 HV)。未波及側No.6位置背離火勢方向,應為 所有取樣點中受火災高溫影響最輕微者,若將其硬度值當作未 受火災影響區域的參考基準,顯示板件受到溫度影響最大的位 置,其硬度約降低12%。

沿著90°-270°軸線的取樣點硬度與火源距離之關係如圖10 所示,可發現不論位於未波及側或波及側之取樣點,其硬度值 皆因接近火源而有降低之趨勢,顯示以火源為中心,具有一個 向周遭擴展的受高熱影響範圍。然而未波及側槽體板片主要受 到熱傳導作用,而波及側板片則受到高溫火焰之直接影響,因 而硬度降低程度較大。

(四)鋼板強度影響評估:

根據API 579附錄F之評估方法^[5],當材料為經退火、正常化 或淬回火熱處理之碳鋼及合金鋼材料,可由硬度測試結果估計 其抗拉強度(tensile strength)值。

取樣點No.6為受火災影響最輕微之區域,依API 579附錄F 而將其硬度值轉換成抗拉強度,約為838 MPa,高於該件板片出 廠檢查証明書之抗拉強度(69 kgf/mm² = 676 MPa),研判應為 該板片於製作儲槽時,材料應受到冷作加工的影響下而導致其 硬度有所提高。同樣地,將硬度最低No.2取樣點之硬度值轉換, 可得抗拉強度為738 MPa,此值亦高於該件板片檢查証明書之抗 拉強度(69 kgf/mm² = 676 MPa),而且仍符合JIS G3115(1973) 規範中SPV 50鋼材之抗拉強度要求。

綜合應力與硬度分析結果顯示:波及側之板片確實受到火 災高溫的影響而造成硬度及強度的下降,但是降低後的抗拉強 度仍然高於材料規範所規定之抗拉強度最小值,故研判在操作 條件不變的狀況下(最大操作壓力和操作溫度範圍不變),經 火災影響後之板件仍可承受初始設計之最大操作壓力。

(五) 綜合分析概要目視觀察

受火損之瓦斯儲槽於分析結果後之概要如下:

- 儲槽表面受火災波及範圍,其表面塗層有焦黑且起泡的
 現象,顯示槽壁鋼板溫度應達到300°C以上。
- 鋼板顯微組織仍為原來的回火麻田散鐵,顯示儲槽板件 最高溫度並未超過材料發生沃斯田鐵相變化之溫度(此 溫度約為723°C)。
- 距離火源越近,鋼板硬度值降低程度越大,但受火災影響最大的取樣點所估算的抗拉強度仍高於規範中SPV
 50Q鋼材之抗拉強度值。
- 藉由波及側板片顯微組織無改變,以及硬度下降等兩項 主要發現,顯示火災高溫效應相當於使鋼板再次承受回 火熱處理。
- 人孔法蘭受高溫影響後,其顯微組織之晶粒為非等軸晶 且排列不規則;經比對JIS規範後,硬度仍符合規定範 圍(大於Hv 127)。
- 操作條件不變時,經火災影響之板件仍可承受初始設計
 之最大操作壓力值。
- 四、結論

本文所評估之瓦斯儲槽因為受到火災之高溫影響,使得下 溫帶及下極板部分之鋼板材料表面受損。綜合量測及分析之結 果研判:火災發生初期,由於該儲槽頂端之散水管立即作動供 水,得以讓槽體溫度不致過度升高,而且該槽體位於一開放空 間,受到空氣對流之影響,不易使材料表面長時間處於高溫狀 態而發生顯微組織改變,各取樣點的抗拉強度仍高於SPV 50Q 鋼材之抗拉強度規範值。然而硬度及強度降低之現象,經應力 分析評估後顯示:若在相同設計操作條件下,經火災影響後之 板件仍可承受初始設計之最大操作壓力值。

雖然板件材料之抗拉強度仍位於JIS G3115 (1973) SPV 50Q 鋼材之抗拉強度範圍內,但仍須針對儲槽板件進行多項非破壞 檢測(NDT)及耐壓測試,以確保槽體結構的完整性和安全性。

五、目前現況

經分析評估後,該儲槽所屬之公司隨即針對儲槽本體進行 一系列非破壞檢測,如超音波厚度檢測、銲道處磁粉探傷與耐 壓測試等項目,而其結果皆顯示槽體並無損傷之現象發生,故 依照原儲槽之操作條件復工。截至目前,該槽體仍正常運轉, 顯示本文所利用之分析評估方法與建議,即可有效評估以鋼鐵 材料為主體之結構物於火損傷害後的堪用性。

- 六、參考文獻
- (1) API 579(2000) SECTION 11 Assessment of Fire Damage.
- (2) JIS G3115(1973) : Steel Plates for Pressure Vessels for Intermediate Service.
- (3) 唐建群 巩建鸣 涂善东, "SPV 50Q 钢在含 H2S 酸性环境下的 腐蚀特性",中国腐蚀与防护学报,第4期,2007。
- (4) JIS G3201(1978) : Carbon Steel Forgings for General Use.
- (5) API 579(2000) : APPENDIX F Material Properties For A FFS Assessment.

Standard			化	學成分(w	/t%)	機械性質						
		С	Si	Mn	Р	S	Yield strength (kgf/mm ²)	Tensile strength (kgf/mm ²)	Impact Energy @-10°C (kgfm)			
JIS G3115 (1973) SPV 50Q		< 0.18	0.15~ 0.75	< 1.60	< 0.035	< 0.040	> 50	62~75	> 4.8			
ЛS G3201 (1978) SF 45A		< 0.6	0.15~ 0.5	0.3~1.2	< 0.030	< 0.035	> 23	45~55	NA			
	板件 編號	鋼板出廠檢查證明書SPV 50Q之性質										
取樣 點 編號		化學成分(wt%)					機械性質					
		С	Si	Mn	Р	S	Yield strength (kgf/mm ²)	Tensile strength (kgf/mm ²)	Impact Energy @-10°C (kgfm)			
No.1 No.4	E-1	0.13	0.24	1.34	0.019	0.004	59	70	26.5			
No.2 No.8 No.9	E-2	0.13	0.24	1.31	0.02	0.004	60	69	30.1			
No.3	D-9	0.14	0.25	1.36	0.02	0.004	57	67	26.6			
No.5	D-18	0.13	0.25	1.38	0.019	0.004	60	70	28.3			
No.6	E-3	0.13	0.24	1.31	0.02	0.004	60	69	30.1			
No.10	D-8	0.14	0.25	1.36	0.02	0.004	56	67	28.5			
No.7	人孔 NA 法蘭 NA					NA	NA	NA				

表1、取樣點所對應之板件性質

表2、各取樣點之硬度值量測結果

取樣點			轉換			
		1	2	3	平均值	HRC
波及側	No.1	234	233	248	238	19.4
	No.2	227	232	238	232	18.5
	No.3	256	250	246	251	22.3
未波及側	No.4	246	240	247	244	21.1
	No.5	258	262	260	260	24.0
	No.6	264	267	260	264	24.6
波及側	No.7(人孔法蘭)	152	140	149	147	78.5*
	No.8	233	244	246	241	20.3
	No.9	253	251	255	253	22.4
	No.10	260	262	262	261	24.1

^{※*}為HRB硬度值

圖1. 瓦斯儲槽之取樣點分布位置示意圖,(a)下溫帶與下極板之垂直投影圖,(b)下極板區之垂直投影圖顯示取樣點 位置和火災區域之分布關係

圖2. 各取樣點外觀

圖4、波及側一取樣點No.2之顯微組織(右圖為左圖之局部放大)

圖5、波及側-取樣點No.3之顯微組織(右圖為左圖之局部放大)

圖6、未波及側-取樣點No.4之顯微組織(右圖為左圖之局部放大)

圖7、未波及側-取樣點No.5之顯微組織(右圖為左圖之局部放大)

圖8、未波及側-取樣點No.6之顯微組織(右圖為左圖之局部放大)

圖9、人孔法蘭-取樣點No.7之顯微組織(右圖為左圖之局部放大)

圖10、沿90°-270°方位分布之取樣點硬度值與火源距離之關係圖