

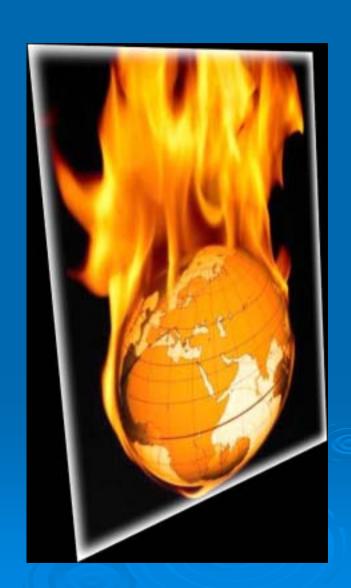
從「小型天然氣重組製氫設備」談氫能設備的安全防護

報告人: 黃耀忠

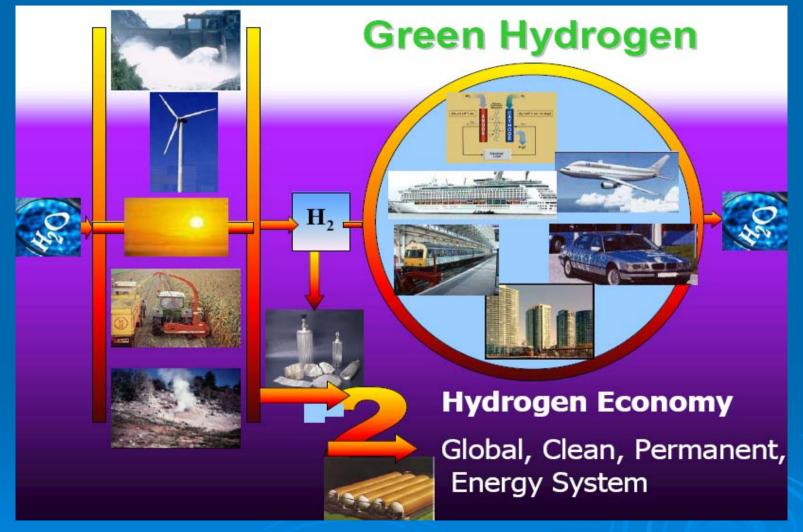
台灣中油公司煉製研究所 產品開發組

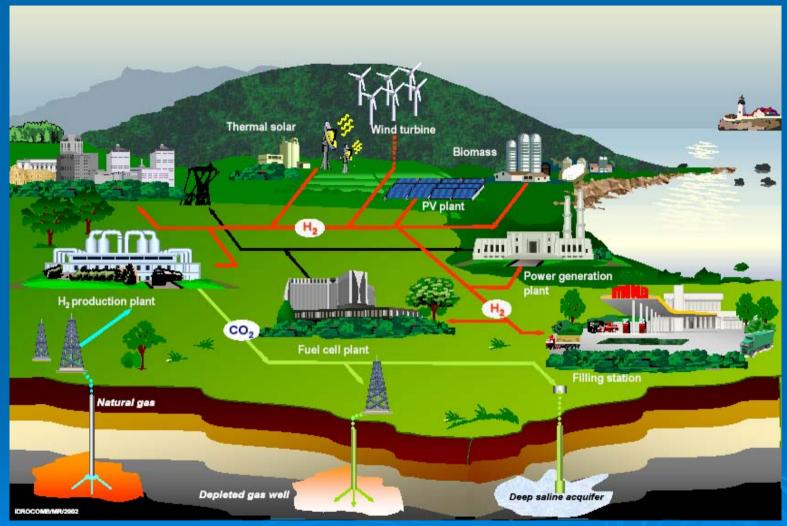
簡報大綱

- 一.前 言
- 二.氫氣特性介紹
- 三. 氫氣場所的防爆概念
- 四.產氫、儲氫、氫運輸的安全
- 五.從產氫設備談加氫站安全技術措施
- 六.結 論

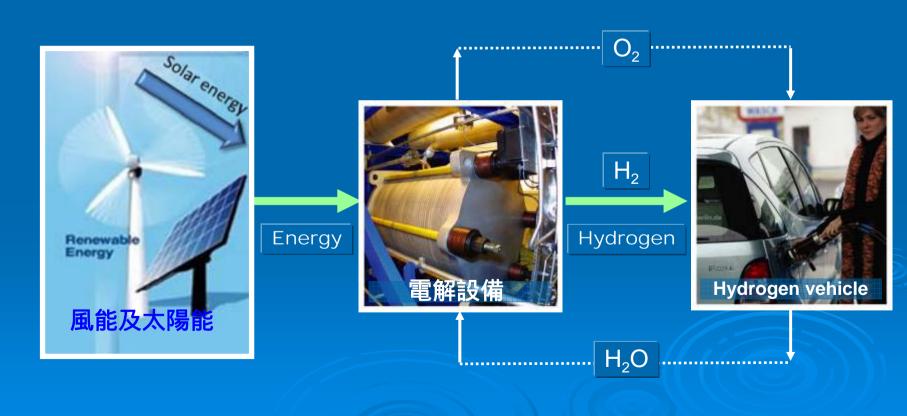


一、前言


- ▶地球暖化造成氣候極劇變化
- ➤石油短缺造成能源危機
- ▶國家整體安全
- ▶國際的競爭壓力-京都議定書



綠色氫能源



未來展望-新能源生活

能源轉換取得乾淨無污染的氫能源

二、氫氣特性介紹

安全特性	氫氣	天然氣	液化石油氣
常溫293.15K常壓1atm下之 密度(kg/m³)	0. 0838	0, 6512	1.8700
自燃溫度(K)	858	813	760
空氣中最小自燃能量(mJ)	0.02	0. 29	0. 26
空氣中之自燃上下限(體積 分率%)	4~75	5, 3~15, 0	2.1~9.5
空氣中之火焰溫度(K)	2318	<u>2148</u>	2385
空氣中之爆炸上下限(體積 分率%)	13~59	6, 3~ <u>14</u>	1. 95~9. 0
常溫293.15k常壓下之定壓 比熱(J/gK)	14. 89	2. 22	1.67
空氣中之爆炸速度(km/s)	2. 0	1.8	1.85
爆炸壓力(bar)	14. 70	16, 30	18. 25
最大熱容量(kj/g)	141.86	55, 53	50.41
爆炸能力(gTNT黃色炸藥/KJ)	0.17	0, 9	0. 20
空氣中延燒特性	往上	往上	往下

H₂ Car

Gasoline Car

Is Hydrogen Safe?

Fuel leakage

燃料洩漏引起燃燒比較

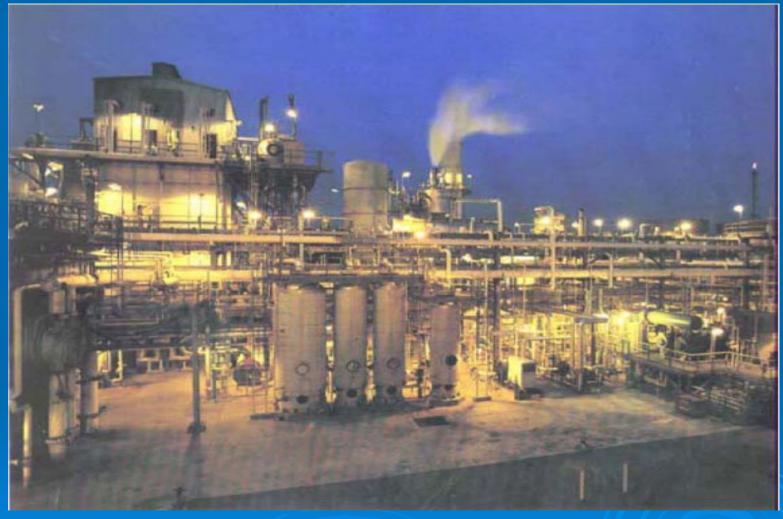
三、氫氣場所防爆概念

- 爆炸三條件:可燃氣、空氣及著火源,氫氣本身就 是可燃氣,只要洩漏與空氣接觸遇著火源就很容易 產生爆炸
- 危險場所區域界定,與危險氣體特性無關
- ▶ 氫爆炸等級美規屬Group B 歐規屬IIC,爆炸等級 取決於危險氣體特性,與危險場所區域界定無關
- ▶ 氫燃點溫度超過450°C等級屬G1或T1
- ▶ MESG小於或等於0.003 in.
- > 氫氣電氣使用安全增壓防爆或耐壓防爆電氣
- ▶ 防爆技術電路功率限製在1.3W左右,採限製電火花 和熱效應

四、產氫、儲氫、氫運輸的安全

為了符合法規,儲氫罐需接各項安全測試,如重覆填充、撞 擊等測試,圖(a)以子彈射擊並觀察無引爆現象、圖(b)在火中 測試、圖(c)觀察燒完後的罐子結構強度等

儲氫罐的安全測試



氫能燃料電池公車

中油公司蒸氣重組產氫工廠

POX

Vaporized fuel is burned with a small amount of air in a Partial OXidation (POX) reactor producing carbon monoxide and hydrogen.

Catalytic Reactors

Using the heat from the POX zone, steam is reacted with most of the carbon monoxide to form additional hydrogen and carbon dioxide.

Electricity Hydrogen-rich gas Air Water to engine Vapor **lectrolyte** Catalyst Hydrogen Fuel Air

Fuel Vaporization

Liquid fuel is vaporized using waste energy from the fuel cell to ensure high-efficiency operation.

Suffur Removal

Sulfur compounds from the fuel are removed to eliminate emissions that form acid rain.

PROX

The remaining carbon monoxide is PReferentially OXidized (burnt) over a catalyst to reduce its concentration to less than 10 ppm.

Fuel Cell

The hydrogen gas combines with air to form electricity, water, and heat to propel the vehicle with virtually zero emissions.

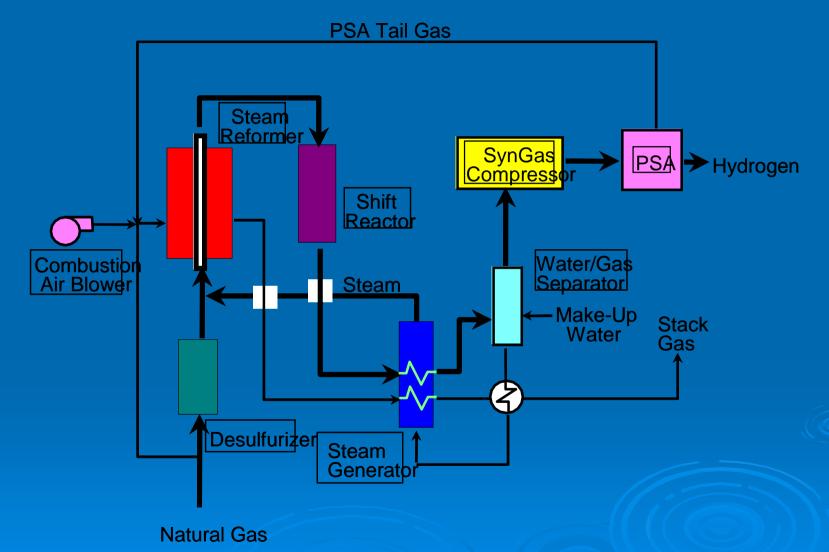
重組製氫設備與燃料電池的應用

貨櫃尺寸: 762cm(長) × 244cm(寬)

× 290cm(高)

重量: 大約13607.78公斤

壓縮機尺寸: 17.5cm(長)×180.34cm(寬)


x221.6cm(高)

重量:大約4989.5公斤

國內第一套小型重組製氫設備

小型天然氣重組製氫設備製程圖

五、小型天然氣重組製氫設備

- > 天然氣與B1蒸汽產生器之蒸汽混合後進入熱交換器預熱 到170 ℃,進入12支爐管出口環狀收集管氣體進行熱交 换(431 ℃),再由頂部進入到爐管進行重組反應重組氣 溫度816 ℃
- > 爐室燃燒之燃料為天然氣及PSA分離出來的尾氣
- PSA由九個沸石吸收劑床組成,透過旋轉輕餾份閥按次序 連續通過每個吸收器,以吸收重組氣體中CO/CO2/CH4等 氣體
- ▶ 氫氣產品 CO<1.0PPM(vo1%) 時, XV-108開啟將氣體送至 氫氣壓縮機
- ▶ 傳統大型使用PSA之氫氣工場,從開機到氫氣正試產出需 要2-3天的時間,本設備由冷俥啟動到氫氣產出只須3小 時

進料須求	天然氣組成
甲烷(min)	85.0mo1%
總丁烷量(max)	2.0mo1%
總硫量(max)	35. 0mg/SM ³
氮氣(max)	1.0mg/SM ³
加熱熱值(min)	9300Kca1/SM ³
壓力	4. 0barg
流量	45. 0NM ³ /h

產氫設備天然氣進料規範

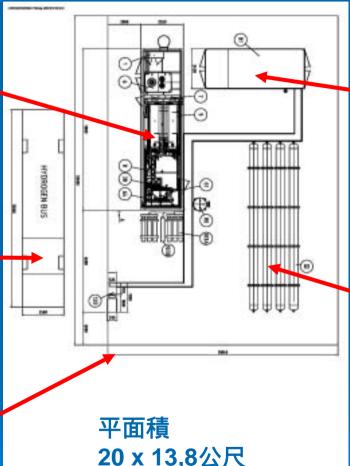
氫氣要求	管制範圍
淨氫氣產量(min)	100NM3/hr
氫氣儲存的壓力(min)	150barg
氫氣純度	純度>99.99%
一氧化碳及硫濃度	<1.0PPM(VOL%)

設備產氫產品要求

德國最大的柏林加氫站

挪威加氫示範運行車隊

台灣中油股份有限公司 CPC Corporation, Taiwan

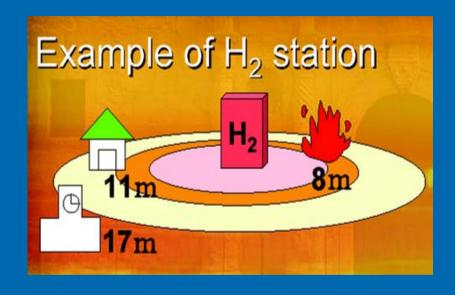

氫氣重組器

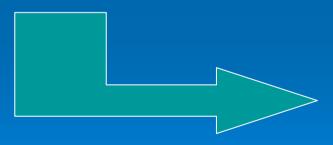
燃料電池公車

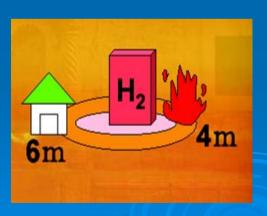
加氫機

20 x 13,8公尺

壓縮機


氫氣儲槽


加氫站配置圖



日本加氫站安全距離

五、加氫站設置地點選擇

- > 考慮天然氣管線接收便利性地點
- > 考慮市場經濟規模性選擇地點
- ▶ 相關法令規範限制之地點考量
- > 加氫站及儲槽設置法規申請
- > 設置地點應有供滅火及緊急搶救設備通行之出入口 及操作之空間,其位置不得設在電氣導線、易燃性 液體輸送管、可燃性液體輸送管、其他易燃性氣體 輸送或氧化物輸送管之下方
- 供氫站平面佈置的防火間距,需要依照設置規定, 日本最新規定離火 源需距離至少4公尺以上,離住 家需距離至少6公尺以上
- ▶ 4.6 m範圍以內之電氣設備應為防爆型,其防爆標 準應符合NFPA 70, National Electrical Code, for Class I, Division 2 lacations 之規定

五、加氫站設置要求

- > 屋頂內平面要平整,不要凹凸不平,以防氫氣洩露 時在凹處積聚
- > 供氫站應採用獨立的單層建築,其耐火等級不應低 於二級,不得在建築物的地下室、半地下室設供氫 站,供氫站應有防雷措施。
- > 輸送氫氣的設備和管路應有良好的接地,管路的法 蘭處應進行跨接,氫設備的支管上設阻火器
- > 氫氣管道應採用無縫金屬管道,管道和附件材質之 規格要求,應選用符合國家標準規格的產品
- 管線接合處應以銅鋅合金焊接,或以法蘭、螺紋或 其他有效防止漏氣的連接方式,螺紋上之密封材料 應與氫氣相容
- ▶ 焊接用之金屬之熔點必須在538°C以上,並應適合 氫氣工作壓力、溫度的要求

五、加氫站設置要求

- ▶ 管道上應設放空管、取樣口和吹掃口,其位置應能 滿足管道內氣體吹掃、置換的要求
- > 氫氣供應系統在安裝後,應先清洗並以最大操作壓 力施以耐壓試驗、氣密試驗, 加壓無漏氣現象始可 啟用
- 系統基礎之高度應等於或高於地平面,所安裝的電 氣設備應滿足場所防火防爆的要求
- 氫氣系統動火檢修,必須做環境測定,確保系統內 部和動火區域氫氣的最高含量不超過0.4%
- ▶ 室內放空管的出口,應高出屋頂2米以上,室外設備 的放空管應高於附近有人操作的最高設備2米以上, 放空管應採取靜電接地,並在避雷保護範圍之內
- 氫氣系統每年至少應實施1次檢查保養,其檢查保養 之標準應由該氫氫系統之專業人士訂之

重組器的安全防護系統

- 箱體內含可燃物偵測器、毒氣體感應器、結合製 氫機、壓縮機、儲存槽、槽車罐裝控制界面,控 制電腦可了解操作情形及各種參數記錄
- > 當偵測器感應可燃氣洩漏、火警,可在貨櫃箱外 面緊急啟動及停止設備操作
- > 箱體內含連續排風系統,避免可燃氣累積
- > 製程條件異常時設備的安全控制模組連鎖系統會 使設備停止操作

水霧方式消防降溫滅火演練

六、結 論

- ▶ 使用安全才是決定氫能發展的大前提
- > 政府應建立氫能設備使用之安全標準規定
- > 積極輔導氫能產業,建立正確的使用觀念
- > 加強業界緊急應變標準作業程序,避免發生職災
- 》期待新世紀安全方便、乾淨便宜、效率的氫能源 早日為世人所接受

參考資料相片來源:

- 1. 挪威StatoilHydro公司及寧遠貿易公司
- 2. Bjørn Gregert Halvorsen 2007-1-03
- 3. 亞太燃料電池科技股份有限公司
- 4. 元智大學燃料電池中心
- 5. 961017 -FuelCellSeminar-日本經濟產業省

圖:加氫站示意簡圖

Thanks for your attention

灣中油股份有限 CPC Corporation, Taiwan